In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect
نویسندگان
چکیده
Effectively prolonging the residence time of nanoprobes in the tumor region and reducing the accumulation of nanoprobes in the vital organs (for example, lung, liver and spleen) is crucial for high-efficiency photodynamic therapy (PDT) of cancer. Herein, we systematically report an ultra-small and highly stable nanoplatform with diameters of 4, 8 and 13 nm that exhibited excellent photodynamic therapeutic efficacy using Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes. Based on the small size effect, the nanoprobes displayed lower cytotoxicity and excellent biocompatibility. Owing to the synergistic virtues of markedly active targeting and intrinsic small size effect, the Fe3O4@P-NPO/PEG-Glc@Ce6 nanoprobes can effectively prolong their residence time in the tumor region and reduce accumulation in the normal organs. Benefitting from the small size effect, the synthesized Fe3O4@P-NPO/PEG-Glc@Ce6 nanoprobes exhibited excellent tumor-targeting capability and photodynamic therapeutic efficacy by inhibiting the growth of tumors in mice under visible red light irradiation with a relatively lower power. The successful application of the small size effect in Fe3O4@P-NPO/PEG-Glc@Ce6 nanoprobes to significantly improve the PDT efficiency in our strategy suggests new building blocks for PDT of tumors and paves a new way for clinical therapies and translation in the near future. NPG Asia Materials (2017) 9, e383; doi:10.1038/am.2017.68; published online 26 May 2017
منابع مشابه
Superparamagnetic Fe3O4-PEG2K-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy
The development of targeted nanoprobes is a promising approach to cancer diagnostics and therapy. In the present work, a novel multifunctional photo/magnet-diagnostic nanoprobe (MNPs-PEG2K-FA@Ce6) has been developed. This nanoprobe is built using folic acid (FA), bifunctional polyethylene glycol (PEG2K) and photosensitizer chlorin e6 (Ce6). The MNPs-PEG2K-FA@Ce6 nanoprobes are superparamagnetic...
متن کاملA charge-reversible nanocarrier using PEG-PLL (-g-Ce6, DMA)-PLA for photodynamic therapy
A polyelectrolyte nanoparticle composed of PEG-PLL(-g-Ce6, DMA)-PLA was developed for nanomedicinal application in photodynamic therapy. These nanoparticles formed stable aggregates through the hydrophobic interaction of poly(lactic acid) and demonstrated pH-dependent behaviors such as surface charge conversion and enhanced cellular uptake at acidic pH, resulting in improved phototoxicity. In v...
متن کاملTumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy.
Tumor-targeted imaging and therapy have been the challenging issue in the clinical field. Herein, we report tumor-targeting hyaluronic acid nanoparticles (HANPs) as the carrier of the hydrophobic photosensitizer, chlorin e6 (Ce6) for simultaneous photodynamic imaging and therapy. First, self-assembled HANPs were synthesized by chemical conjugation of aminated 5β-cholanic acid, polyethylene glyc...
متن کاملNanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial-mesenchymal transition for oral cancer.
Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small i...
متن کاملEGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy
Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal thera...
متن کامل